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Abstract Here, we show that extracorporeal shock waves
(ESW), at a low energy density value, quickly increase neuronal
nitric oxide synthase (nNOS) activity and basal nitric oxide
(NO) production in the rat glioma cell line C6. In addition, the
treatment of C6 cells with ESW reverts the decrease of nNOS
activity and NO production induced by a mixture of lipopolysac-
charides (LPS), interferon-c (IFN-c) plus tumour necrosis
factor-a (TNF-a). Finally, ESW treatment efficiently downregu-
lates NF-jB activation and NF-jB-dependent gene expression,
including inducible NOS and TNF-a. The present report sug-
gests a possible molecular mechanism of the anti-inflammatory
action of ESW treatment.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Nitric oxide (NO) is a highly versatile signaling molecule

playing a critical role in the nervous, immune and cardiovas-

cular systems. NO is generated in different cell types by at

least three isoforms of NO synthase (NOS) through the con-

version of LL-arginine and oxygen into LL-citrulline. Two en-

zymes, neuronal NOS (nNOS) and endothelial NOS

(eNOS), are constitutively expressed and their enzymatic

activity is Ca2+/calmodulin-dependent. These constitutive

NOS (cNOS) are responsible for the production of physiolog-

ical levels of NO involved in events such as vasodilation, angi-
Abbreviations: ESW, extracorporeal shock waves; HUVEC, human
umbilical vein endothelial cells; IFN-c, interferon-c; IL-1b, interleu-
kin-1b; MIX, mixture of 1 lg/ml LPS, 10 ng/ml IFN-c plus 10 ng/ml
TNF-a; LL-NAME, N-nitro-LL-arginine methyl ester; NO, nitric oxide;
NOS, nitric oxide synthase; cNOS, constitutive NOS; eNOS, endo-
thelial NOS; iNOS, inducible NOS; nNOS, neuronal NOS; TNF-a,
tumour necrosis factor-a
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ogenesis, and neurotransmission [1]. The third enzyme is an

inducible and Ca2+-independent isoform of NOS (iNOS), vir-

tually expressed in all cell types after stimulation with LPS

and/or with different cytokines, such as interferon-c (IFN-

c), interleukin-1b (IL-1b), or tumour necrosis factor-a
(TNF-a). Induction of iNOS expression occurs at the tran-

scriptional level and is mediated by the early activation of

some nuclear transcriptional factors, including NF-jB [2].

Massive amounts of NO produced by iNOS under patholog-

ical conditions (e.g., inflammatory diseases) are potentially

harmful, especially when time-spatial regulation of iNOS

expression becomes compromised.

Shock waves (SW), defined as a sequence of single sonic

pulses characterized by high peak pressure (100 MPa), fast

pressure rise (<10 ns), and short lifecycle (10 ls), are conveyed
by an appropriate generator to a specific target area with the

energy density in the range of 0.003–0.890 mJ/mm2. Extracor-

poreal shock waves (ESW) therapy was first applied in patients

in 1980 to break up kidney stones [3]. In the last ten years, this

technique has been successfully employed as an anti-inflamma-

tory therapy in a number of orthopedic diseases [4] such as

pseudoarthrosis [5], tendinitis calcarea of the shoulder, [6,7]

epicondylitis [8], plantar fasciitis [9], and several inflammatory

tendon diseases. In particular, ESW treatment is able to induce

an increase of neoangiogenesis in tendons [10] and the regener-

ation of muscle and tendon tissues [11]. More generally, an

immediate increase in blood flow around the treated area has

been frequently observed.

The clinical observation of an immediate vasodilatation and

laboratory findings of an enhancement of angiogenesis around

the ESW-treated area immediately give rise to the hypothesis

that ESWmay modulate the production of NO. In this respect,

we have reported that NO is produced non-enzymatically by

the treatment of a LL-arginine/hydrogen peroxide mixture with

ESW, although this NO production requires higher energy

potencies (0.89 mJ/mm2) than those employed clinically [12].

More recently, we have demonstrated that ESW, at a clinically

compatible energy density, are able to induce the enhancement

of enzymatic NO production in resting cells [13]. Indeed, we

have showed that ESW quickly enhance eNOS activity and

NO production in human umbilical vein endothelial cells (HU-

VEC).
blished by Elsevier B.V. All rights reserved.
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However, it is important to keep in mind that high NO levels

produced by iNOS are extensively released during inflamma-

tion and that, under these conditions, NF-jB is also activated.

Therefore, evaluation of ESW effect on NF-jB activation,

iNOS and other NF-jB-dependent gene expression is funda-

mental in assessing molecular mechanism(s) of the clinically

observed anti-inflammatory action of ESW.

In the present study, we examined the effect of ESW on the

modulation of nNOS catalytic activity, NO production, NF-

jB activation, and iNOS and TNF-a mRNA expression in

rat glioma C6 cells, a cell line taken as a cellular model because

it expresses both constitutive and inducible NOS.
2. Material and methods

2.1. Reagents
All chemicals used throughout the present study were from Sigma

(Milan, Italy), unless otherwise specified.

2.2. Cell cultures
The rat glioma cell line C6 was cultured in Dulbecco�s modified Ea-

gle�s medium (DMEM; BioWhittaker, Cambrex Bio Science, Belgium)
supplemented with 10% v/v fetal bovine serum (FBS; BioWhittaker),
100 UI/ml penicillin, 100 lg/ml streptomycin, 2 mM glutamine,
40 lg/ml gentamicin, in humidified atmosphere of 95% air, 5% CO2

at 37 �C.

2.3. ESW treatment conditions
An electromagnetic lithotripter (MODULITH SLK device Storz

Medical AG, Switzerland) was used throughout the present study.
3 · 106 cells were cultured in 50 mm Petri dishes in 2 ml medium and
treated with ESW directly focusing the centre of the plate under eco-
graphic control. In order to measure NO production, 1.5 · 105 cells
were plated on glass coverslips one day before ESW treatment. After
ESW treatment, cells were maintained in humidified atmosphere of
95% air plus 5% CO2 at 37 �C for the time indicated in each experi-
ment.

2.4. Western blotting
C6 cells (3 · 106) were lysed by repeated freezing and thawing in a

50 mM HEPES buffer, pH 7.4, containing 1 mM dithiothreitol,
1 mM EDTA and protease inhibitors. After centrifugation
(16500 · g for 30 min at 4 �C) the particulate fractions were washed
with the lysis buffer, solubilized with 20 mM CHAPS and centrifuged
(25000 · g for 30 min at 4 �C). An aliquot of the cytoplasmatic and
membrane fractions (40 lg proteins/lane) were loaded on to 7.5%
SDS–polyacrylamide gel. After the electrophoresis, proteins were blot-
ted to a PVDF membrane (Immobilon P, Millipore S.p.A., Rome,
Italy) and Western blot analysis was performed using an anti-eNOS
monoclonal antibody (BD Transduction Laboratories, Franklin
Lakes, NJ, USA). Protein concentration in samples was determined
by the method of Bradford [14].

2.5. nNOS assay
NOS activity was estimated by measuring the conversion of

LL-2,3,4,5-[3H]arginine to LL-2,3-[3H]citrulline, according to the method
described by Colasanti et al. [15].

2.6. DAF-2DA method
The production of NO was assayed using the DAF-2DA detection

system, as previously described [13]. Briefly, 10 lM 4,5-diaminofluo-
rescein diacetate (DAF-2DA; Alexis-Corp., San Diego, CA, USA)
was added to the cells cultured in serum free medium and incubated
at 37 �C for 10 min. After washings with PBS plus 1.2 mM CaCl2,
the cells were fixed with 3% w/v paraformaldehyde plus 4% w/v su-
crose, and cellular fluorescence was imaged using confocal laser scan-
ning microscope (Axioplan 2, LSM 510, Carl Zeiss, Göttingen,
Germany) equipped with argon (488 nm) excitation beams. The laser
intensity, the shutter aperture, and the exposure/integration settings
were kept constant to allow quantitative comparisons of relative fluo-
rescence intensity of cells between treated groups. Images were digitally
acquired and processed for fluorescence determination at the single-cell
level, using the public domain NIH Image 1.61 program (developed at
the U.S. National Institutes of Health and available on Internet at
http://rsb.info.nih.gov/nih-image/).

2.7. Electrophoretic mobility shift assay
Nuclear extracts of C6 cells were prepared according to Osborn et al.

[16] and EMSA analysis was performed as described elsewhere [17].

2.8. RNA preparation and Northern blot analysis
Total cellular RNA was isolated using Trizol reagent (Invitrogen-

Life Technologies Corp., Carlsbad, CA). Samples of 40 lg of total
RNA were separated by electrophoresis on 1% agarose denaturing
gel in MOPS buffer and then blotted onto a Hybond N membrane
(Amersham Biosciences, Little Chalfont, Buckinghamshire, UK). In
order to control the amount of RNA in each lane, the gel was stained
with ethidium bromide before and after blotting. RNA was hybridized
with the cDNA specific for rat iNOS [15] previously labeled by means
of a DECAprime II DNA Labeling Kit (1.0–2.0· 109 cpm/lg; Am-
bion, Austin, TX, USA). The intensity of hybridization was visualized
by autoradiography and mRNA expression was quantified using the
public domain NIH Image 1.61 program (developed at the U.S. Na-
tional Institutes of Health and available on Internet at http://rsb.info.-
nih.gov/nih-image/).

2.9. RT-PCR
Total cellular RNA was purified as described above and reverse

transcribed into cDNA, using MMLV reverse transcriptase and oligo
dT(12–18) as primers. cDNA was amplified for the iNOS gene (450 bp)
or TNF-a gene (200 bp) using specific primers (iNOS forward: 5 0-
TCCTTGCATCCTCATCGGGCC-3 0, iNOS reverse: 5 0-TCGTGA-
TAGCGCTTCTGGCTCT-3 0; TNFa forward: GAGCTGAGAGA-
TAACCAGCTGGTG-3 0, TNFa reverse 5 0-CAGATAGATGGGC-
TCATACCAGGG-3 0). The mRNA for the constitutive GAPDH
(forward: 5 0-CCATGGAGAAGGCTGGGG-3 0 reverse: 5 0-CAAAG-
TTGTCATGGATGACC-3 0) was examined as the reference cellular
transcript. Estimates of the relative iNOS or TNF-a mRNA amounts
were obtained dividing the area of the iNOS or TNF-a band, respec-
tively, by the area of the corresponding GAPDH band (Bio-Rad
Multi-Analyste/PC Version 1.1).
2.10. Statistical analysis
Statistical analysis of the data for single comparisons was performed

by Student�s t test.
3. Results and discussion

We have recently reported that exposure of HUVEC to

ESW leads to an increase in eNOS activity and NO formation

[13]. The results illustrated in Fig. 1 confirm and extend these

findings by showing that ESW rapidly increase NO production

by enhancing catalytic activity of nNOS in rat C6 glioma cells.

In particular, ESW treatment of C6 cells at energy densities of

0.03 mJ/mm2 (Fig. 1A) and 0.11 mJ/mm2 (Fig. 1B) enhanced

cytosolic NOS activity in a shot-number-dependent manner

(500–1500 shots), the maximum value (about 80% over the

control value) being reached at 500 shots for both energy den-

sities. In order to better examine the energy density depen-

dency of ESW-elicited enhancement of cytosolic NOS

activity, C6 cells were treated with ESW (500 shots) at energy

densities varying from 0.003 to 0.11 mJ/mm2. As shown in

Fig. 1C, the maximum effect was achieved already at

0.03 mJ/mm2. Therefore, unless otherwise described, ESW

treatment was performed throughout this study at 0.03 mJ/

http://rsb.info.nih.gov/nih-image/
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Fig. 1. (A) Modulation of nNOS activity by different ESW shots at 0.03 mJ/mm2 energy level. C6 cells were treated at energy level 0.03 mJ/mm2 with
a range of 500–1500 ESW shots, and nNOS activity was measured. (B) Modulation of nNOS activity by different ESW shots at 0.11 mJ/mm2 energy
level. C6 cells were treated at energy level 0.11 mJ/mm2 with a range of 500–1500 ESW shots, and nNOS activity was measured. (C) Modulation of
nNOS activity by different energy levels of ESW treatment. C6 cells were treated at energy levels between 0.003 and 0.11 mJ/mm2 with 500 shots, and
nNOS activity was measured. (D) Localization of eNOS after ESW treatment. C6 cells were treated at the energy level of 0.03 mJ/mm2 with 500
shots. Then, proteins in the membrane and cytosolic fractions were analyzed by Western blot, using an anti-eNOS antibody. For A, B and C, data are
shown as a fold increase (means ± S.D., n = 6); *P < 0.005 versus non-treated cells.

Fig. 2. Modulation of NO production by ESW treatment. Confocal
images of C6 cells treated with ESW in the presence and absence of
1 mM LL-NAME. Control represents non-treated C6 cells. Magnifica-
tion: 40·. DAF-2T fluorescence is expressed as arbitrary units; digital
scale ranging from 0 to 255, minimum to maximum fluorescence
intensity, respectively. The mean fluorescence was calculated from 20
to 40 cells/observation field; two observations field/treatment condi-
tion/experiment. Bars represent the means ± S.D. from four to six
separate experiments. *P < 0.005.
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mm2 with 500 shots, i.e., under conditions close to those em-

ployed in clinical anti-inflammatory treatments.

Note that NOS activity was measured after enzyme purifica-

tion from the cytosolic fraction where normally nNOS resides.

However, C6 cells also express eNOS, the latter being localized

on the membrane fraction in the inactive form [18]. In order to

exclude a possible translocation of eNOS after ESW treatment

and its presence in the cytosolic fraction, cytoplasmatic and

membrane fractions of cells were western blotted using an

anti-eNOS antibody. As shown in Fig. 1D, eNOS, although

present in the membrane fraction, was essentially absent in

the cytosolic fraction of either control or ESW-treated cells,

indicating that in any case cytosolic NOS activity exclusively

arises from nNOS.

To verify whether ESW-elicited enhancement of nNOS

activity resulted in an increase of the NO synthesis in

ESW-treated C6 cells, the intracellular NO production was

measured using the DAF-2DA detection system. When the

cells were treated with ESW, DAF-2T fluorescence was sig-

nificantly enhanced above the background level in C6 cells

(Fig. 2). As expected, this fluorescence response was pre-

vented in cells treated with 1 mM N-nitro-LL-arginine methyl

ester (LL-NAME) for 30 min before ESW treatment (Fig. 2),

thus, indicating that the increase of DAF-2T fluorescence

was consequent to the activation of the LL-arginine-NO path-

way.

The ESW-induced enhancement of constitutive NOS-depen-

dent NO levels is worth of interest when we take into account

the recent notion that physiological, low levels of NO, similar

to those produced by the basal activity of nNOS and/or eNOS,

prevent induction of iNOS mRNA expression (but also of

other NF-jB-dependent genes, including TNF-a and cycloox-

ygenase-2) through the suppression of NF-jB activation

[17,19–23]. As a consequence, iNOS gene expression takes

place after LPS/cytokine stimulation, provided that the

cNOS-generated NO is reduced below a threshold value in a
short time [15,17]. In this respect, we have recently reported

that iNOS inducers (e.g., LPS and IFNc) elicit a rapid inacti-

vation of nNOS and a decrease of basal NO levels [24], an
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event mediated by arachidonic acid-dependent tyrosine phos-

phorylation of nNOS [15,25].

On the basis of these considerations, we next verified the ef-

fect of ESW on nNOS activity and on intracellular NO pro-

duction in the presence of iNOS inducers. As expected, a

mixture of 1 lg/ml LPS, 10 ng/ml IFN-c plus 10 ng/ml TNF-

a (MIX) rapidly and gradually decreased nNOS activity in

C6 cells, reaching an undetectable value after 1 h of treatment

(Fig. 3A). Note that at these concentrations, MIX promoted

maximal activation of NF-jB and iNOS expression (see be-

low). As shown in Fig. 3A, treatment of MIX-stimulated C6

cells with ESW (0.03 mJ/mm2, 500 shots) fully reversed the

suppressive effect of MIX on nNOS activity at any time point

examined (i.e., 30 min and 1 h). Further analyses using the

DAF-2DA detection system confirmed the above results and

revealed that ESW treatment brought DAF-2T fluorescence

back to the control value, thus counteracting the MIX-trig-
Fig. 3. Effect of ESW on nNOS activity and NO production in MIX-
treated C6 cells. (A) nNOS activity was measured in homogenates of
C6 cells treated with MIX or with MIX plus ESW (0.03 mJ/mm2, 500
shots) for 30 min and 1 h. Data are shown as specific activity
(means ± S.D., n = 10); *P < 0.05, **P < 0.01 versus not ESW-treated
cells. (B) Confocal images of C6 cells treated with MIX with or without
ESW treatment (0.03 mJ/mm2, 500 shots) and then incubated for
30 min. Controls represent non-treated cells. Magnification: 40·.
DAF-2T fluorescence of cells is expressed as arbitrary units; for
further details see legend of Fig. 2. *P < 0.05.
gered drop in NO production (Fig. 3B). This persisting effect

strongly suggests that this may take place when ESW are ther-

apeutically employed, the kinetic data being consistent with

the clinically observed long-lasting results of ESW treatment.

Thus, the clinically observed beneficial effects of ESW fit, at

least in part, to their ability of keeping NO amount at the basal

level, despite the presence of pro-inflammatory cytokines.

Because it is well established that suppression of cNOS activ-

ity represents an early, necessary event for cytokine-induced

NF-jB activation and iNOS expression, the effect of ESW in

these responses was investigated next.

In order to address whether ESW could interfere with the

MIX-elicited NF-jB activation, the DNA-binding activity of

NF-jB was measured by using EMSA assay. As expected,

exposure of C6 cells to MIX for 30–60 min caused rapid

activation of NF-jB (Fig. 4A, lanes 3 and 5, respectively). It

is important to recall that under these conditions, MIX was

able to quickly inhibit nNOS activity in C6 cells. Interestingly,

when C6 cells were incubated with MIX in the presence of

concomitant ESW treatment, a downregulation of NF-jB
activation was observed. The maximal effect was reached after

a 60-min treatment (Fig. 4A, lane 6), although a partial

reduction of DNA binding was also found after a 30-min

treatment (Fig. 4A, lane 4). Treatment of cells with ESW alone

did not affect NF-jB activation (Fig. 4A, lane 2).
The inhibitory effect of ESW on MIX-elicited NF-jB activa-

tion was mimicked by treating C6 cells with the NO donor

NOR-3 (400 lM) for 30 min (Fig. 4B, lane 5), whereas it was

completely reversed when C6 cells were pre-incubated with

1 mM LL-NAME for 30 min (Fig. 4B, lane 4). Finally, treat-

ment of MIX-stimulated cells with 1 mM LL-NAME for

30 min increased NF-jB activation (Fig. 4B, lane 3) with re-

spect to MIX treatment (Fig. 4B, lane 2).

These results indicate that ESW, being able to rapidly en-

hance nNOS activity, efficiently reduced MIX-elicited NF-jB
activation, confirming the notion that physiologically pro-

duced NO levels keep NF-jB activation suppressed

[17,26,27]. In order to prove that the observed downregulation

of NF-jB activation by ESW ended up in transcriptional

depression of NF-jB-dependent genes, iNOS mRNA expres-

sion levels were analyzed. In this respect, C6 cells were treated

with ESW (0.03 mJ/mm2 with 500 and 1000 shots) at the same

time points of MIX administration, and then kept in the incu-

bator for 3–4 h. By using Northern blot analysis, we confirmed

that MIX treatment induced iNOS mRNA expression, the

peak being observed after 4 h of treatment (Fig. 5, lane 7).

Interestingly, ESW downregulated MIX-induced iNOS gene

expression and the maximum effect was reached with 500 shots

(Fig. 5, lane 9). An identical outcome was obtained by using

RT-PCR analysis (Fig. 6).
Since NF-jB activation is a key event in the induction of a

number of inflammatory cytokines, the effect of ESW treat-

ment on TNF-a gene expression was also analyzed. By using

RT-PCR, we found that the treatment with ESW (in particular

when used at 500 shots) strongly inhibited TNF-a mRNA

expression induced by MIX for 4 h, although a complete inhi-

bition was never attained (Fig. 6).

Altogether, these results identify ESW therapy as a possible

useful tool for downregulating NF-jB and NF-jB-dependent
genes (e.g., iNOS and TNF-a), leading to a drastic reduction

in the whole inflammatory process. On the other hand, poten-

tially beneficial effects of ESW due to their capacity of enhanc-



Fig. 4. Effect of ESW (0.03 mJ/mm2, 500 shots) on MIX-elicited NF-jB activation in C6 cells. (A) lane 1: control cells; lane 2: cells treated with ESW;
lane 3: cells treated with MIX for 30 min; lane 4: cells treated with MIX plus ESW and incubated for 30 min; lane 5: cells treated with MIX for 1 h;
lane 6: cells treated with MIX plus ESW and incubated for 1 h. (B) Lane 1: control cells; lane 2: cells treated with MIX for 30 min; lane 3: cells pre-
incubated with 1 mM LL-NAME for 30 min and then treated with MIX; lane 4: cells pre-incubated with 1 mM LL-NAME for 30 min and then treated
with MIX plus ESW; lane 5: cells pre-incubated with 400 lM NOR-3 for 30 min and then treated with MIX for 30 min. NF-jB activation is
expressed as arbitrary units. The constitutively expressed transcription factor CBF-1 is used as an internal standard. The experiment was repeated
three times, and the sheet and the histogram show a representative result.

Fig. 5. Effect of ESW on iNOS mRNA expression. Northern blot analysis of iNOS mRNA. Lane 1: control cells; lane 2: cells treated with ESW,
0.03 mJ/mm2, 1000 shots; lane 3: cells treated with ESW, 0.03 mJ/mm2, 500 shots; lane 4: cells treated with MIX for 3 h; lane 5: cells treated with
MIX plus ESW (0.03 mJ/mm2, 1000 shots) for 3 h; lane 6: cells treated with MIX plus ESW (0.03 mJ/mm2, 500 shots) for 3 h; lane 7: cells treated with
MIX for 4 h; lane 8: cells treated with MIX plus ESW (0.03 mJ/mm2, 1000 shots) for 4 h; lane 9: cells treated with MIX plus ESW (0.03 mJ/mm2, 500
shots) for 4 h. iNOS mRNA expression is expressed as arbitrary units. The experiment was repeated three times, and the blot and the histogram show
a representative result.
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Fig. 6. Effect of ESW on NF-jB dependent gene expression. RT-PCR analysis of iNOS and TNF-a mRNA expression. Lane 1: control cells; lane 2:
cells treated with MIX for 4 h; lane 3: cells treated with MIX plus ESW (0.03 mJ/mm2, 500 shots) for 4 h; lane 4: cells treated with MIX plus ESW
(0.03 mJ/mm2, 1000 shots) for 4 h. GAPDHmRNA was examined as a reference cellular transcript. The experiment was repeated three times, and the
gel and the histogram show a representative result.
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ing eNOS activity in endothelial cells have been recently re-

ported [13]. Furthermore, the same report indicates that

ESW treatment is capable not only to prevent but also down-

regulate NF-jB activation, in line with clinical observations of

a positive anti-inflammatory action of ESW treatment in most

patients with ongoing inflammatory events.

In conclusion, the results obtained in C6 cells provide evi-

dence that clinically observed ESW anti-inflammatory action

may be exerted, at least in part, by counteracting the cyto-

kine-induced drop in constitutive NOS activity. Maintenance

of the proper amounts of NO may contribute to contrast the

cytokine-elicited NF-jB activation and the successive induc-

tion of NF-jB-dependent genes, including iNOS and TNF-a.
However, further studies are needed to investigate this mecha-

nism in vivo.
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